Egocentric localization of a perisaccadic flash by manual pointing
نویسنده
چکیده
Reaching towards a visual object in the absence of visual referents relies on a chain of information, from the sensory signals encoding the object's image on the retina, to the motor signals driving the hand. One link in this chain is an extraretinal eye position signal (EEPS), which specifies the position of the eye in the head. EEPS must be updated in precise coordination with the eye's rapidly changing position, or perisaccadic visual targets will be mislocalized. There have been conflicting reports about the existence and nature of mislocalizations associated with saccades. We measured perisaccadic visual localization by presenting brief (250 microseconds), bright (6000 cd/m2), binocular, gaze-point (foveal) probe flashes in an otherwise dark field to normal human subjects instructed to point to them with an unseen hand. Saccade and fixation targets were auditory, making intravisual comparison impossible. Saccades, elicited randomly to left and right of straight ahead, had a mean magnitude of 8.9 deg. Control trials, employing only non-perisaccadic probes and providing feedback of pointing errors, were randomly interspersed, to monitor and control drift of hand-eye coordination. On average, localization began to shift for probes presented 2 msec after the eye began to move, reaching a stable post-saccadic value with time constant tau = 71 msec. A second experiment was similar, except that viewing was monocular, and probes were presented randomly, at gaze (on fovea), 6 deg left of gaze (right of fovea) and 6 deg right of gaze (left of fovea). The main analysis treated saccades larger than 8 deg: their mean magnitude was 12.9 deg. Flashes left of gaze were relocalized faster (tau = 65 msec) than flashes right of gaze (tau = 129 msec) around the time of leftward saccades. In contrast, flashes right of gaze were relocalized faster (tau = 62 msec) than flashes left of gaze (tau = 90 msec) around the time of rightward saccades. Time constant was independent of saccade size. Updating began for probes presented within 4 msec of the beginning of saccades, and was not a function of saccade or flash direction. Thus, there were no systematic mislocalizations of probes presented before eye movement, and large mislocalizations of probes presented during and after. Mislocalizations were, on average, always in the direction opposite the saccade, and were maximal (about half the magnitude of the completed saccade) near the end of the saccade. Stable post-saccadic localization was not achieved until about 100-300 msec after completion of a saccade; EEPS was updated slowly, compared to eye position itself. The visual field was not remapped uniformly: the side that would normally contain the target of a visually evoked saccade (and usually the target of a corrective saccade), was updated with a shorter time constant.
منابع مشابه
Perisaccadic perception of continuous flickers
To realize perceptual space constancy, the visual system compensates for the retinal displacement caused by eye movements. It has been reported that the compensation process does not function perfectly around the time of a saccade--a perisaccadic flash is systematically mislocalized. However, observations made with transient flash stimuli do not necessarily indicate a general perisaccadic failu...
متن کاملMislocalization of perceived saccade target position induced by perisaccadic visual stimulation.
The perceptual localization of objects flashed at the time of a saccade often shows large spatial distortions. These perisaccadic mislocalizations exhibit different spatial patterns depending on the experimental condition. In darkness, when only extraretinal information is available, mislocalization is spatially uniform. In light and when visual references are available, mislocalization is dire...
متن کاملA computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness.
Spatial perception, the localization of stimuli in space, can rely on visual reference stimuli or on egocentric factors such as a stimulus position relative to eye gaze. In total darkness, only an egocentric reference frame provides sufficient information. When stimuli are briefly flashed around saccades, the localization error reveals potential mechanisms of updating such reference frames as d...
متن کاملThe use of egocentric and exocentric location cues in saccadic programming
Theoretically, the location of a visual target can be encoded with respect to the locations of other stimuli in the visual image (exocentric cues), or with respect to the observer (egocentric cues). Egocentric localization in the oculomotor system has been shown to rely on an internal representation of eye position that inaccurately encodes the time-course of saccadic eye movements, resulting i...
متن کاملPerception of relation of stimuli locations successively flashed before saccade
Based on localization error for a single perisaccadic flash, eye position signal is supposed to change more slowly than physical eye position. Nevertheless, a flicker is not perceived as moving in accordance with localization error for a single flash. We carried out two experiments to investigate this problem. Experiment 1 examined how a single flash or a flicker presented before saccade was pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 36 شماره
صفحات -
تاریخ انتشار 1996